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Auxiliary Vertices Method for
Kagome-Lattice Eight-Vertex Model
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We investigate a class of eight-vertex models on a Kagome lattice. With the help
of auxiliary vertices, the Kagome-lattice eight-vertex model ( K E V M ) is related
to an inhomogeneous system which leads to a one-parameter family of commuting
transfer matrices. Using an equation for commuting transfer matrices, we deter-
mine their eigenvalues. From calculated eigenvalues the correlation length of the
KEVM is derived with its full anisotropy. There are two cases: In the first case
the anisotropic correlation length (ACL) is the same as that of the triangular/
honeycomb-lattice Ising model. By the use of an algebraic curve, it is shown
that the Kagome-lattice Ising model, the diced-lattice Ising model, and the
hard-hexagon model also have (essentially) the same ACL as the KEVM. In the
second case we find that the ACL displays 12fold rotational symmetry.

1. INTRODUCTION

Solvable models share a common property that they have commuting
transfer matrices.(1-3) The underlying concept is the Yang-Baxter relation.
In solving the (square-lattice) eight-vertex model,(4,5) Baxter noticed
importance of the relation: As shown in (2.2), the Yang-Baxter relation
determines the parametrized forms of the local Boltzmann weights. If the
transfer matrix of the eight-vertex model is represented by V(w), it follows
that V(u) and V(u') commute with each other for all complex numbers u
and u'. The logarithmic derivative of V(u) at the point u= —/I is related to
the Hamiltonian H of the XYZ spin chain.(1,6) For the XYZ spin chain,
expanding In V(u) around u= — A gives an infinite number of conserved

1 Department of Physics, Nara Medical University, Kashihara, Nara 634, Japan.

KEY WORDS: Eight-vertex model; auxiliary vertex; anisotropic correlation
length; algebraic curve; free state; bound state.

363

0022-4715/98/0100-0363$15.00/0 © 1998 Plenum Publishing Corporation



quantities which are involutive. The existence of an infinite number of con-
served quantities implies that the Bethe ansatz method(5,7) is applicable to
calculations of H and V(u). We can find the ground state energy and low-
lying excitations of H and the corresponding eigenvalues of V(u) by the
Bethe ansatz method.

The eight-vertex model can be defined for any four coordinated lattice.
By the use of the Yang-Baxter relation, it was shown that a class of eight-
vertex models on a Kagome lattice is solvable.(1,8) (See also refs. 9 and 10.)
Baxter(1) obtained the free energy of the Kagome-lattice eight-vertex model.
He also investigated the spontaneous polarization and the horizontal
correlation length. Recently, in connection with the equilibrium crystal
shape problem,(11) the directional dependence (or anisotropy) of the
correlation length and the interfacial tension was calculated for several
solvable models.(12-18) For square-lattice models it was pointed out that the
equilibrium shape is represented as an algebraic curve. In ref. 18, consider-
ing the energy-momentum excitations of a spin chain, we suggested that
the algebraic curve is related to a deformation of the pseudo-Euclidian
algebra. The Kagome-lattice eight-vertex model can be regarded as a
generalization of the square-lattice eight-vertex model. The situation ren-
ders the anisotropic correlation length of the Kagome-lattice eight-vertex
model quite interesting.

In a previous paper(19) we developed a new method to analyze the six-
vertex model on a square lattice rotated through an arbitrary angle with
respect to the coordinate axes; see also ref. 20. Auxiliary vertices were used
to define an inhomogeneous system which still leads to a one-parameter
family of commuting transfer matrices. A product of commuting transfer
matrices can be interpreted as a transfer matrix acting on zigzag walls in
the rotated system. We solved an equation for commuting transfer matrices
to determine their eigenvalues. We discussed finite-size properties of the
rotated system from the viewpoint of the conformal field theory.

The auxiliary vertices method is widely applicable to analyses of solv-
able models on triangular, honeycomb, and Kagome lattices. The applica-
tion has the advantage that we can utilize various techniques established in
calculations of square-lattice models. In this paper we use the auxiliary ver-
tices method to investigate the Kagome-lattice eight-vertex model defined
by Baxter. Our emphases will be on the anisotropy of the correlation
length. The present paper is organized as follows: In Section 2 we review
some properties of the eight-vertex model. In Section 3, with the help of
auxiliary vertices, the Kagome-lattice eight-vertex model is related to an
inhomogeneous system. We consider commuting transfer matrices argu-
ment for the inhomogeneous system. In Section 4 we calculate the largest
eigenvalues of the commuting transfer matrices. From the results in
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2. SOME PROPERTIES OF MODELS

Suppose a square lattice. The eight-vertex model is represented by
drawing an arrow on every edge so that an even number of arrows point
into and out of each site (or vertex). We formulate it in terms of arrow-
spins. We associate an arrow-spin aj with each edge j according to the
following convention: aj= +1 if the corresponding arrow points up or to
the right, and aj = -1 otherwise. Different Boltzmann weights are assigned
to the different configurations around a vertex. When arrow-spins around
a vertex are v, a, U, and B counterclockwise starting from the west edge
(Fig. 1), the Boltzmann weight around it is W( v, a | B, U) with

Fig. 1. Boltzmann weight around a vertex.
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Section 4 the anisotropic correlation length is derived in Section 5. Section 6
is devoted to a summary and discussion.

and

The nonzero Boltzmann weights in (2.1) are parametrized as
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for all a, B, U, v, u', v' = ± 1 with u' = u + u" + X (Fig. 2). The Boltzmann
weights W also satisfy the following properties:(1-3) the standard initial
condition

Fig. 2. The Yang-Baxter relation.

where p is a normalization factor; the spectral parameter u and the crossing
parameter X appear as arguments of the theta functions. For definitions of
the theta functions and related elliptic functions, see Appendix A of ref. 21.
We denote the nome by q, the quarter-periods by I and I', and the
modulus by k.

We regard A and k as real constants, and u as a complex variable. The
Boltzmann weights W satisfy the Yang-Baxter relation(1-3)

the crossing symmetry

and the local inversion relation

where $ ( • > • ) denotes the Kronecker symbol and h(u) is defined by
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Using (2.3), Baxter showed that a class of eight-vertex models on a
Kagome lattice is solvable.(1) In a Kagome lattice(22) there are three types
of vertices; let us call them 1, 2, and 3 (Fig. 3). Assume that all vertices of
the same type have the same Boltzmann weights. We denote by a, the

Fig. 4. Three types of vertices on the Kagome lattice. The corrsponding Boltzmann weights
are shown underneath.

From (2.4) and (2.5) it follows that

Fig. 3. Kagome-lattice eight-vertex model.



value of a for vertices of type 1; and b1, c1, d1, a2, b2, c2, d2, c3, d3,
c3, d3 are introduced similarly. For a vertex of type j we order arrow con-
figurations around it as in the jth row of Fig. 4. We consider the case that
the Boltzmann weights a1 b1, c1, d1 are given by (2.2), and those of types
2 and 3 by (2.2) with the spectral parameter u replaced by u'( = u + u" + A)
and u", respectively. In this case the Yang-Baxter relation (2.3) implies that
we can shift horizontal lines without changing the partition function; see
Figs. 11.5 and 11.6 of ref. 1. The Kagome lattice can be deformed into a
lattice consisting of three square-lattice regions: in the upper (or lower)
region there exists an inhomogeneous eight-vertex model; in the central
region the square lattice is drawn diagonally. Baxter used the deformation
to calculate the free energy of the Kagome-lattice eight-vertex model.
Moreover, Baxter found that the correlation length along the horizontal
direction is the same as that of the square-lattice eight-vertex model along
the diagonal direction.
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3. AUXILIARY VERTICES METHODS

We explain a method to investigate the Kagome-lattice eight-vertex
model. We start by defining an inhomogeneous system.(19-20) Suppose a
square lattice of 2M columns and 4N rows with periodic boundary condi-
tions in both directions. We also assume that the spectral parameter u can
vary from site to site. The value of u for the site (i, j) are denoted by uij.
Set the uii to be

with

(Fig. 5a), and the normalization factor p to be
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Fig. 5. (a) Inhomogeneous system ( 3 . 1 ) . Vertices u = i- (respectively v', v", — v, /., —/) are
presented by ; >( respectively O, ®, ® , x , + ). (b) Decomposing auxiliary vertices u = L and
— A, we deform the square lattice into a Kagome lattice. ( c ) T h e Kagome lattice consists of
four kinds of vertices: u= ±r, r', and r". (d| Using the crossing symmetry, we find that the
inhomogeneous system ( 3 . 1 ) is equivalent to the Kagome-lattice eight-vertex model.

In this paper analyses are restricted to an antiferroelectric ordered regime

The inhomogeneous system is related to the eight-vertex model on a
Kagome lattice. To see this, we decompose auxiliary vertices.(19) In (3 .1)



vertices uij= ±A are auxiliary ones. We separate the east and south edges
from the west and north ones at each auxiliary vertex uij= —L The separa-
tion yields two types of corners. Because of the standard initial condition
(2.4), there is one arrow pointing in and one arrow pointing out at each
corner. We can regard two edges meeting at a corner as a bonding where
an arrow is placed. Auxiliary vertices uij = L are decomposed in a similar
way: instead of (2.4), (2.4') is used to separate the east and north edges
from the west and south ones. After all the auxiliary vertices are decom-
posed (Fig. 5b), we can continuously deform the square lattice into a
Kagome lattice. The Kagome lattice consists of four types of vertices:
Uij= ±v, v', and v" (Fig. 5c). Note that the orientation of vertices Uij = v is
different from that of uij= —v. We use the crossing symmetry (2.5) to
change the orientation of vertices uij = —v, with their spectral parameter
— v replaced by v. It follows that the inhomogeneous system (3.1) is equiv-
alent to the Kagome-lattice eight-vertex model defined by Baxter (Fig. 5d).
Thus, we can analyze the Kagome-lattice eight-vertex model by considering
the inhomogeneous system (3.1).

The inhomogeneous system (3.1) is investigated by commuting transfer
matrices argument.(1) Let a= {a0, a1,..., a 2 M - 1 } and B= {B0, B1,..., B 2 M - 1}
be the arrow-spins on two successive rows of vertical edges, and U= {u0,
U1,..., U 2 M - 1} the arrow-spins on a row intervening between a and /?. We
define inhomogeneous transfer matrices by

where U2M=U0. From the Yang-Baxter relation (2.3), we find that the
inhomogeneous transfer matrices form a one-parameter family of com-
muting transfer matrices.

We can construct a nonsingular matrix Q(u) which satisfies the matrix
equation(1,5,16)
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where A' = A — 2iI and
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with

with h(u) defined by (2.7). Since Q(u) commutes with Q(u') and V I H (u")
for all complex numbers u, u', and u", the matrix equation (3.6) gives the
eigenvalue equation

where we denote the eigenvalues of V I H (u) by V I H(u), and the correspond-
ing ones of Q(u) by Q(u).

Two matrices O and R are introduced; O is a diagonal matrix with
entries + 1 (respectively — 1) for arrow configurations of an even (respec-
tively odd) number of down arrows; R has the effect of reversing all arrows.
The matrices O, R, Q(u), and V I H (u ' ) commute with each other for all
complex numbers u and u'. The eigenvalues of O (respectively R) are
denoted by O (respectively R); note that R take a value of +1 or -1.
Detailed analyses show that Q(u) must be of the form

The zeros uj and a constant t are determined by the condition that the rhs
of (3.8) vanishes

and the sum rules

where p and p' are integers. Solving (3 .11) with (3.12), and then using
(3.10) in (3.8) with solutions uj and t, we can determine the eigenvalues



where T corresponds to the transfer matrix of the Kagome-lattice eight-
vertex model and Tj [or V m ; j ( u ) ] is the jth eigenvalue of T [or V I H (u)]
in decreasing order of magnitude.

The anisotropic correlation length of the Kagome-lattice eight-vertex
model can be found by considering the correlation length between two ver-
tical arrows a00 and a2m,4n in the inhomogeneous system (3.1). We intro-
duce an operator S by
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with

Vm(u). There are many eigenvalues corresponding to different solutions of
(3.11).

After the eigenvalues VlH(u) are calculated, we can get necessary infor-
mation to investigate the inhomogeneous system (3.1) and hence the
Kagome-lattice eight-vertex model by letting u= — v, —A, and v". The par-
tition function of the Kagome-lattice eight-vertex model is calculated as

with

Because of the local inversion relation (2.6), S has the effect of shifting
an arrow configuration on a row of vertical edges by two lattice spacings:
{a0, a1, a2,..., a2 M - 1} -> {a2M_2, a 2 M - 1 , a0,..., a2 M_3}. The expectation
value <aooa2m,4n> is represented as(15)

with a diagonal matrix A defined by



Eq. (3.19) shows that we can find the correlation length of the Kagome-
lattice eight-vertex model along the direction designated by n from the
ratios of the eigenvalues of the transfer matrix T and the corresponding
ones of the shift operator S.

4. LARGEST EIGENVALUES

In this section we solve (3.7)-(3.12) to find the eigenvalues V I H ( u ) .
These kinds of calculations are usually achieved by introducing a distribu-
tion function of the zeros uj.

(23) This approach is a very cumbersome one,
however. We use another approach.(1,16,21,24-25) Methods are somewhat
indirect. Instead of the distribution of uj analytic properties of the func-
tions in (3.8) are investigated. Using the analytic properties, we determine
asymptotic forms of V I H ( u ) as M-> oc.

Note that in the regime (3.4) two antiferroelectric ordered states are
degenerate. It is expected that there exists a doublet of largest eigenvalues
in — A < Re(u) < —v. To calculate these eigenvalues, we repeat almost the
same argument in Section 3 of ref. 16; see also refs. 1 and 24. As a beginning,
we investigate the zero-temperature limit. The zero-temperature limit corre-
sponds to the k -»0 and I', A, v, u -> oo limit with the ratios A/I', v/I', u/I'
being order of unity. We find a doublet of eigenvalues labeled by O =
O0 = (— )M and R = ± 1; the two eigenvalues are denoted by VIH. ± ( u ) . For
V I H ; R(u) the zeros uj, are given by
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where tj= —m/n, A is the matrix transformed from A, and Sj is the jth
eigenvalue of S:

Applying a similarity transformation which diagonalizes V(u) , and taking
the N, M -» oo limit, we obtain

In a vertical strip which contains the line Re(u)= — (l + v)/2, the function
P(u] is estimated as



(See Appendix B of ref. 16.)
The asymptotic form of the doublet of largest eigenvalues as M -> oo

are determined as
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where

When M becomes large, the asymptotic form of V I H ; R ( u ) is

with

From (4.4) we identify the two eigenvalues V I H ; R ( u ) as the doublet of
largest eigenvalues. The corresponding eigenstates are called ground states.

Here, we turn to nonzero temperatures. The zero-temperature results
(4.1)-(4.4) suggest that

(i) for large M the zeros uj lie on the line Re(u) = — (L + v)/2,

(ii) there exists a real positive number 8 such that PR(u) is exponen-
tially larger than 1 as M-»oo for — 8 < Re(u) + (A +v)/2<0;
PR(u) is exponentially smaller than 1 for 0 < Re(u) + (A + v)/2 < <5,

(in) V I H ; R (u ) is analytic and nonzero in a vertical strip containing
the line Re(w) = -(L + v)/2.

Assuming the properties (i)-(iii), and after some calculations, we obtain
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with

Eqs. (4.5) and (4.7) are consistent with the three conditions (i)-( i i i ) . In the
k->0 limit (4.5) reproduces (4.2) along the line Re(u) = — (A + t>)/2, and
(4.7) reproduces (4.4) for — A < Re(u) < — v. These facts verify the correct-
ness of the argument. The zero-temperature result (4.4) implies that (4.7)
is analytically continued into -2A - v < Re(u) < L

In (4.7) the two eigenvalues V I H ; R ( u ) are equal in magnitude and
opposite in sign. This degeneracy cannot occur for finite M by the Perron
Frobenius theorem. Calculations of finite-size correction terms show that
F I H ; R (u) are asymptotically degenerate as M-> oc:(1,16,24)

822/90/1-2-25
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where

(Note that the finite-size correction term on the rhs is positive and
exponentially smaller than 1.)

In addition to the doublet of largest eigenvalues, we can derive the
asymptotic forms of the next-largest eigenvalues, the neat-next-largest
eigenvalues, and so on. For these eigenvalues it is expected that Re(u j)=
— (A + v)/2 for a finite number of zeros and the other zeros are con-
tinuously distributed on the line Re(u) = — (A + v)/2. We have to dis-
tinguish between the two subregimes 0 < A < I ' / 2 and I ' / 2 < A < I ' : in the
subregime 0 < A < I'/2 all the excitations are superpositions of so-called free
states, whereas in the subregime I'/2 < A < I' there exist bound states
besides the free states.(23)



We can prove that V I H ( u ) / V I H ; + ( u ) converges as M-» oo in a vertical strip
containing the line Re(u)= — (A + v)/2, and that the limiting function L(u)
is analytic there; see Appendix E of ref. 21.

The limiting function L(u) can be continued so that the inversion
relation (4.15) is valid everywhere in the complex plane. The continued
function L(u) is meromorphic and doubly periodic:

L(u + 4iI) = L(u + 4A) = L(u) (4.16)
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Firstly, we consider the subregime 0 < X < I'/2. We use a method
developed in ref. 21. Eq. (4.5) shows that, when M becomes large, P+(u)
behaves as

We find that P(u) has the same exponential behavior with possible excep-
tion of some isolated points. It follows that for large M

Limiting functions are introduced by

where we denote the eigenvalue Q(u) corresponding to VIH; +(u) by Q+(u).
Taking the M-> oo limit in (4.12) gives

We obtain the inversion relation



Secondly, we investigate the subregime I ' /2<A<I ' . In this subregime
bound states appear besides free states. Repeating almost the same argu-
ment, we can prove that (4.17) is satisfied in a region including the vertical
strip — 2A — v< Re(u) < A. It is found that the zeros which do not lie on the
line Re(u j) = -(A + v)/2 form strings with ( 2 I ' - 2A)-spacing and endpoints
UL, UR in 0<Re(u) + (A + u)/2<I' , I' <Re(u)- t - (A + v)/2 <2I', respec-
tively. The strings are classified into two types. In a type I string u-zeros
are distributed symmetrically about the line Re(u) = — (A + v)/2 + I', where
1 u< ^ [ I ' / ( I ' — A)] — 1 and [a] is the largest integer ^a. A type II string
consists of u = [ I ' / ( I ' — A ) ] or [ I ' / ( I ' - A)] + 1 zeros, whose distribution is
not necessarily symmetric about the line Re(u) = — (A + v)/2 + I'. (See
Appendix C of ref. 25.) The contribution from a type I string to the
product in (4.17) is given by

Kagome-Lattice Eight-Vertex Model 377

It follows that L(u) must be of the form

where uz and up represent zeros and poles of L(u) in the rectangle [ — 2A, 0) x
[-2iI, —2iI ) , respectively. The zeros for which Re(u j)^ -(A + v)/2 are
grouped pairwise with distance 2A in |Re(u) + (A + v)/2\ <2A. Those occur
as singles in 2A< Re(u) + (A + v>)/2 <2I' — 2A. For both cases it is shown
that L(u) is analytic and nonzero in 0 < |Re(u) + (A + v)/2\ < 2A. We obtain

with an even integer v and imaginary free parameters Qj (j= 1, 2,..., v),
which is just a superposition of free states. For the next-largest eigenvalues
there are superpositions with O= ±O0 and R = +1; the limiting function



The corresponding excitation is a bound state of two free particles. The
contribution from a type II string to the product in (4.17) is

5. ANISOTROPIC CORRELATION LENGTH

Now, using the results in Section 4, we calculate the anisotropic
correlation length £, of the Kagome-lattice eight-vertex model. Firstly we
consider the subregime 0 < I < I'/2, and then the subregime I'/2 < A < I'.

As shown in Section 3, the Kagome-lattice eight-vertex model is equiv-
alent to the inhomogeneous system (3.1). Using the expression (3.19), we
consider the anisotropic correlation length in the subregime 0 < /I < I'/2.
From (3.14b), (3.20), and (4.13a), it follows that
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where 0 is an imaginary free parameter and

with imaginary free parameters <9, and <92.
In the subregime I'/2 < X < I' the lowest excitations are dominated by

bound states with U. = 1, O = — O0, and R=+1. The limiting function for
the next-largest eigenvalues is

Situations for higher excitations are somewhat complicated. We have to
divide the subregime into some regions. For example, to consider the
next-next-largest eigenvalues, the subregime is divided into two regions:
Eq. (4.22), which comes from free states with O=±O0 and R= +1,
gives the expression for the next-next-largest eigenvalues in the region
I' /2<A<2/'/3; the next-next-largest eigenvalues corresponds to bound
states with u = 2, O = O0, and R = ± 1 in the region 2/'/3 < A < /'; thus, we
obtain for the next-next-largest eigenvalues



We note that the matrix elements [A]0, j and [A] j , 0 in (3.19) vanish if
O= —O0 or R= +1 for the jth eigenvalue.(17,23) When n becomes large
with n = —m/n fixed, only the band of next-largest eigenvalues with O = O0

and R = — 1 contribute to the leading asymptotic behavior of the correla-
tion function. Use (5 .1) with (4.19) in (3.19). The summation in (3.19)
becomes an integral over the imaginary parameters 01 and <02 because of
a continuous distribution of the next-largest eigenvalues. We obtain

where the function p ( @ } , 02) is to be determined from the distribution of
the eigenvalues and the matrix elements [A]0 y, [A]y 0; its explicit form is
not important here.

We regard triangles in the Kagome-lattice eight-vertex model as equi-
lateral ones with unit edge lengths (Fig. 5d). We denote by 0 the angle
between the vertical axis and the direction along which the correlation
length is calculated. The ratio r\ is connected with 8 by

Estimating the integral on the rhs of (5.2) by the method of steepest
descent, we find the correlation length £, of the Kagome-lattice eight-vertex
model:

Kagome-Lattice Eight-Vertex Model 379



Fig. 6a is the polar plot of l/£ given by (5.4)-(5.6) with v = v"= -A/3,
where interactions of the model are isotropic.

In the subregime I'/2 < A < /' the next-largest eigenvalues cannot con-
tribute to the asymptotic behavior of the correlation function since they
correspond to O=—O0 and R= ±1. The asymptotic behavior of the
correlation function is determined by the next-next-largest eigenvalues with
O = O0 and R=-1. We use (4.24) instead of (4.19). Note that the first
equation of (4.24) is identical with (4.19). For I ' /2<A<2/73 the
anisotropic correlation length is the same as that of the subregime
0 < A < I ' / 2 . For 2I'/3 < A < I ' , substituting (5.1) with the second equation
of (4.24) into (3.19), we find that

with
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where 0S is a saddle point determined as a function of 0 by

where the summation in (3.19) becomes the integral along the imaginary
axis and the function p(0) is to be determined from the distribution of the
eigenvalues and the matrix elements [A]0 , j , [A] j , 0 . Integrate it by the
method of steepest descent. It follows that
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Fig. 6. (a) The polar plot of 1/J; for 0</. <2/'/3 and r = r" = -/,/3. From the outermost
figure, ,v= I x 10 '', 0.0001, 0.001, 0.004, 0.01, 0.02, 0.04, 0.07, 0.12, successively, (b) The polar
plot of 1A; with /. = l2 I ' / l7 and r = r" = — /,/3. From the outermost figure, . v = 1 x 1 0 1 0 ,
1 x 10 6, 0.00001, 0.0001. 0.001, 0.004, 0.016, 0.05, 0.12. (F.ach figure is suitably scaled.)
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where the saddle point 0S is determined as a function of 6 by

with (5.6). The polar plot of 1/£ given by (5.6), (5.8)-(5.9) with
v = v" = -1/3 and I' = 171/12 is shown in Fig. 6b.

6. SUMMARY AND DISCUSSION

In this paper we investigated a class of eight-vertex models on a
Kagome lattice, a model defined by Baxter. Analyses were restricted to the
antiferroelectric ordered regime

where q is the nome of the theta functions in (2.2), x and y are defined by
(4.3), and

Auxiliary vertices were introduced into the model to relate it to an
inhomogeneous system which possesses a one-parameter family of com-
muting transfer matrices. The transfer matrix and the shift operator of the
Kagome-lattice eight-vertex model were represented as products of com-
muting transfer matrices. Using an equation, we determined the eigenvalues
of the commuting family. From the calculated eigenvalues the correlation
length £ of the Kagome-lattice eight-vertex model was derived with its full
anisotropy.

There were two cases with respect to the parameter q: 0 < q < x3 and
x3 < q < x2. In the case 0 < q < x3 the anisotropic correlation length is inde-
pendent of q. Baxter showed that the Kagome-lattice eight-vertex model
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Fig. 7. In the q -> x4 limit the Kagome-lattice eight-vertex model is decoupled into two Ising
models; one is on a triangular lattice, and the other on a honeycomb lattice. The (eight-vertex
model) Kagome lattice is shown by solid lines, the (Ising model) triangular lattice by broken
lines, and the (Ising model) honey-comb lattice by dotted lines.
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can be regarded as an Ising model with two- and four-spin interactions.(1)

In the q —> x4 limit the Ising model is decoupled into two nearest-neighbor
Ising models; one is on a triangular lattice, and the other on a honeycomb
lattice (Fig. 7). The two nearest-neighbor Ising models are connected with
each other by the star-triangle relation. The interaction coefficients of the
triangular-lattice Ising model are given by

where the snh function is defined by (A.2) of ref. 21 with the quarter-
periods I1 and I1' which satisfy I1'/I1 = A/I. The interaction coefficients L1,
L2, and L3 of the honeycomb-lattice Ising model are related to those of the
triangular-lattice Ising model by

It is noted that the triangular-lattice Ising model and the honeycomb-
lattice Ising model have the same anisotropic correlation length; see,
for example, ref. 12. In the decoupling limit q -> x4 we find that for all
directions



where £t/h is the anisotropic correlation length of the triangular/honeycomb-
lattice Ising model; the factor 2 is because of a change of lattice spacing.

It is helpful to consider the Wulff construction(11)

For any Ising model on a planar lattice, it was shown that the inter-
facial tension is related to the correlation length on a dual lattice above the
critical temperature.(13) Using the relation and the Wulff construction,
Holtzer(14) derived the equilibrium crystal shapes of various planar Ising
models. See Table I of ref. 14, and compare the shape (6.8) with the equi-
librium crystal shapes of the Kagome-lattice Ising model and the diced-
lattice Ising model. We find that the anisotropic correlation length in the
case 0 < q < x3 is the same as those of the two Ising models (above the criti-
cal temperature). In ref. 15 the anisotropic correlation length of the hard-
hexagon model was calculated. We note that the function <j>(a] defined by
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where A is a scale factor. Substituting (5.4) into (6.6), we obtain

The Wulff construction (6.6) gives a one-to-one correspondence between
the anisotropic correlation length £ and the shape (6.7). We can rewrite
(6.7) into a compact form

with



(2.13b) of ref. 15 is equivalent to the product p[ -0 + A/3] p[-0- A/3].
It follows that the anisotropic correlation length of the hard-hexagon
model in the disordered phase is written into the form (6.8) with
v = v" = — A/3 and A replaced by A + 3Ii. Thus, the anisotropic correlation
length in the case 0 < q < x3 and that of the hard-hexagon model in the dis-
ordered phase are of the same type. We expect that a wide class of models
have (essentially) the same anisotropic correlation length as the Kagome-
lattice eight-vertex model has in the case 0<q<x3. Furthermore, in (5.1b)
and (5.2), (S/S+ ) was expressed by the use of L 1 ( u ) in (4.19) or L2(u)
given by the first equation of (4.24). We can regard the expression as a
product of a limiting function which corresponds to bound states of two
free particles; compare it with (4.20), for example. It is found that (6.8)
corresponds to a special limit of the algebraic curve (4.6) in ref. 17; see also
ref. 18.

In (4.10) we showed that the doublet of largest eigenvalues V I H ; ± ( u )
are asymptotically degenerate as M—> oo. The interfacial tension a of the
Kagome-lattice eight-vertex model along the horizontal direction 0 = n/2 is
derived from the finite-size correction terms there.(1,15-16,24) It follows that
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The auxiliary vertices method is easily generalized to calculate the
anisotropic interfacial tension of the Kagome-lattice eight-vertex model.
We can prove that (6.10) is satisfied for all directions. Detailed calculations
about this point will be reported in next publication.

In the case x3 < q< x2 the anisotropic correlation length £ depends on
the parameter q. In (5.1b) and (5.7) we represented ( S / S + ) by the use of
L2(u) given by the second equation of (4.24). This expression can be regarded
as a limiting function corresponding to bound states of four free particles.
It is expected that the anisotropic correlation length in the case x3 < q < x2

is also a general one. We note that the anisotropic correlation length £ pos-
sesses twelvefold rotational symmetry in a special limit of this case.
Recently, Widom (26) showed that the Bethe ansatz method is applicable to
tilings of the plane by squares and equilateral triangles. The random tiling
model displays twelvefold rotational symmetry. Analysis of the anisotropic
correlation length of the random tiling model is desirable. We hope that
this problem will be solved in further investigations.

We can obtain the anisotropic correlation length of the Kagome-lattice
eight-vertex model in other regimes from the analysis in the antiferroelectric
ordered regime (6.1). At last, we calculate the anisotropic correlation
length £,* in a disordered regime. We represent the Boltzmann weights for
the three types of vertices in the disordered regime as a*j, b*j, c*j, and d*j
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The anisotropic interfacial tension <rt/h of the triangular/honeycomb-lattice
Ising model is connected with the anisotropic interfacial tension a of the
Kagome-lattice eight-vertex model by
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( j = 1 , 2 , 3 ) . The Boltzmann weights a*j, b*j, c*j, d*j in the disordered
regime are related to those of the regime (6.1) by

for j =1,2, 3. In stead of (3.19), we start with (2.13) and (2.17) of ref. 23.
In (2.17) of ref. 23, the eigenvalues Aj are replaced by Tj. Moreover, we
introduce the eigenvalues Sj of the shift operator into the expression.

For 0<q<x4 we use (5.1) with the limiting function (4.19); the
anisotropic correlation length £,* is derived from an integral over the band
of next-largest eigenvalues corresponding to free states with O = — O0 and
R=-1. It follows that

for all directions. In the decoupling limit q -> x4 we obtain

where ^ is the anisotropic correlation length of the triangular/honeycomb-
lattice Ising model above the critical temperature; the interaction coefficients
Kf and Lf of the Ising model above the critical temperature is related to
Ki and Li by

We find that for all directions

Eqs. (6.10), (6.12), (6.13), and (6.16) imply that

(See ref. 12.)
For x4<q<x2 the anisotropic correlation length £,* in the disordered

regime is determined by the band of next-largest eigenvalues corresponding
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to bound states with 0= -O0 and R=-1. Substitute (4.23) into (5.1;
After some calculations, we find that £* is given by

with the saddle point 0S determined by

and

where d1 is defined by (4.21]
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